↳ Prolog
↳ PrologToPiTRSProof
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
MINSORT_IN(L, .(X, L1)) → U11(L, X, L1, min1_in(X, L))
MINSORT_IN(L, .(X, L1)) → MIN1_IN(X, L)
MIN1_IN(M, .(X, L)) → U41(M, X, L, min2_in(X, M, L))
MIN1_IN(M, .(X, L)) → MIN2_IN(X, M, L)
MIN2_IN(X, A, .(M, L)) → U51(X, A, M, L, min_in(X, M, B))
MIN2_IN(X, A, .(M, L)) → MIN_IN(X, M, B)
MIN_IN(X, Y, Y) → U81(X, Y, gt_in(X, Y))
MIN_IN(X, Y, Y) → GT_IN(X, Y)
GT_IN(s(X), s(Y)) → U111(X, Y, gt_in(X, Y))
GT_IN(s(X), s(Y)) → GT_IN(X, Y)
MIN_IN(X, Y, X) → U71(X, Y, le_in(X, Y))
MIN_IN(X, Y, X) → LE_IN(X, Y)
LE_IN(s(X), s(Y)) → U121(X, Y, le_in(X, Y))
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
U51(X, A, M, L, min_out(X, M, B)) → U61(X, A, M, L, min2_in(B, A, L))
U51(X, A, M, L, min_out(X, M, B)) → MIN2_IN(B, A, L)
U11(L, X, L1, min1_out(X, L)) → U21(L, X, L1, remove_in(X, L, L2))
U11(L, X, L1, min1_out(X, L)) → REMOVE_IN(X, L, L2)
REMOVE_IN(N, .(M, L), .(M, L1)) → U91(N, M, L, L1, notEq_in(N, M))
REMOVE_IN(N, .(M, L), .(M, L1)) → NOTEQ_IN(N, M)
NOTEQ_IN(s(X), s(Y)) → U131(X, Y, notEq_in(X, Y))
NOTEQ_IN(s(X), s(Y)) → NOTEQ_IN(X, Y)
U91(N, M, L, L1, notEq_out(N, M)) → U101(N, M, L, L1, remove_in(N, L, L1))
U91(N, M, L, L1, notEq_out(N, M)) → REMOVE_IN(N, L, L1)
U21(L, X, L1, remove_out(X, L, L2)) → U31(L, X, L1, minsort_in(L2, L1))
U21(L, X, L1, remove_out(X, L, L2)) → MINSORT_IN(L2, L1)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
MINSORT_IN(L, .(X, L1)) → U11(L, X, L1, min1_in(X, L))
MINSORT_IN(L, .(X, L1)) → MIN1_IN(X, L)
MIN1_IN(M, .(X, L)) → U41(M, X, L, min2_in(X, M, L))
MIN1_IN(M, .(X, L)) → MIN2_IN(X, M, L)
MIN2_IN(X, A, .(M, L)) → U51(X, A, M, L, min_in(X, M, B))
MIN2_IN(X, A, .(M, L)) → MIN_IN(X, M, B)
MIN_IN(X, Y, Y) → U81(X, Y, gt_in(X, Y))
MIN_IN(X, Y, Y) → GT_IN(X, Y)
GT_IN(s(X), s(Y)) → U111(X, Y, gt_in(X, Y))
GT_IN(s(X), s(Y)) → GT_IN(X, Y)
MIN_IN(X, Y, X) → U71(X, Y, le_in(X, Y))
MIN_IN(X, Y, X) → LE_IN(X, Y)
LE_IN(s(X), s(Y)) → U121(X, Y, le_in(X, Y))
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
U51(X, A, M, L, min_out(X, M, B)) → U61(X, A, M, L, min2_in(B, A, L))
U51(X, A, M, L, min_out(X, M, B)) → MIN2_IN(B, A, L)
U11(L, X, L1, min1_out(X, L)) → U21(L, X, L1, remove_in(X, L, L2))
U11(L, X, L1, min1_out(X, L)) → REMOVE_IN(X, L, L2)
REMOVE_IN(N, .(M, L), .(M, L1)) → U91(N, M, L, L1, notEq_in(N, M))
REMOVE_IN(N, .(M, L), .(M, L1)) → NOTEQ_IN(N, M)
NOTEQ_IN(s(X), s(Y)) → U131(X, Y, notEq_in(X, Y))
NOTEQ_IN(s(X), s(Y)) → NOTEQ_IN(X, Y)
U91(N, M, L, L1, notEq_out(N, M)) → U101(N, M, L, L1, remove_in(N, L, L1))
U91(N, M, L, L1, notEq_out(N, M)) → REMOVE_IN(N, L, L1)
U21(L, X, L1, remove_out(X, L, L2)) → U31(L, X, L1, minsort_in(L2, L1))
U21(L, X, L1, remove_out(X, L, L2)) → MINSORT_IN(L2, L1)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
NOTEQ_IN(s(X), s(Y)) → NOTEQ_IN(X, Y)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
NOTEQ_IN(s(X), s(Y)) → NOTEQ_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
NOTEQ_IN(s(X), s(Y)) → NOTEQ_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
REMOVE_IN(N, .(M, L), .(M, L1)) → U91(N, M, L, L1, notEq_in(N, M))
U91(N, M, L, L1, notEq_out(N, M)) → REMOVE_IN(N, L, L1)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
REMOVE_IN(N, .(M, L), .(M, L1)) → U91(N, M, L, L1, notEq_in(N, M))
U91(N, M, L, L1, notEq_out(N, M)) → REMOVE_IN(N, L, L1)
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
REMOVE_IN(N, .(M, L)) → U91(N, M, L, notEq_in(N, M))
U91(N, M, L, notEq_out) → REMOVE_IN(N, L)
notEq_in(0, s(X)) → notEq_out
notEq_in(s(X), 0) → notEq_out
notEq_in(s(X), s(Y)) → U13(notEq_in(X, Y))
U13(notEq_out) → notEq_out
notEq_in(x0, x1)
U13(x0)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
LE_IN(s(X), s(Y)) → LE_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
GT_IN(s(X), s(Y)) → GT_IN(X, Y)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
GT_IN(s(X), s(Y)) → GT_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
GT_IN(s(X), s(Y)) → GT_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MIN2_IN(X, A, .(M, L)) → U51(X, A, M, L, min_in(X, M, B))
U51(X, A, M, L, min_out(X, M, B)) → MIN2_IN(B, A, L)
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MIN2_IN(X, A, .(M, L)) → U51(X, A, M, L, min_in(X, M, B))
U51(X, A, M, L, min_out(X, M, B)) → MIN2_IN(B, A, L)
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
U51(L, min_out(B)) → MIN2_IN(B, L)
MIN2_IN(X, .(M, L)) → U51(L, min_in(X, M))
min_in(X, Y) → U8(Y, gt_in(X, Y))
min_in(X, Y) → U7(X, le_in(X, Y))
U8(Y, gt_out) → min_out(Y)
U7(X, le_out) → min_out(X)
gt_in(s(X), 0) → gt_out
gt_in(s(X), s(Y)) → U11(gt_in(X, Y))
le_in(0, 0) → le_out
le_in(0, s(Y)) → le_out
le_in(s(X), s(Y)) → U12(le_in(X, Y))
U11(gt_out) → gt_out
U12(le_out) → le_out
min_in(x0, x1)
U8(x0, x1)
U7(x0, x1)
gt_in(x0, x1)
le_in(x0, x1)
U11(x0)
U12(x0)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U21(L, X, L1, remove_out(X, L, L2)) → MINSORT_IN(L2, L1)
MINSORT_IN(L, .(X, L1)) → U11(L, X, L1, min1_in(X, L))
U11(L, X, L1, min1_out(X, L)) → U21(L, X, L1, remove_in(X, L, L2))
minsort_in(L, .(X, L1)) → U1(L, X, L1, min1_in(X, L))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
min2_in(X, X, []) → min2_out(X, X, [])
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U1(L, X, L1, min1_out(X, L)) → U2(L, X, L1, remove_in(X, L, L2))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U2(L, X, L1, remove_out(X, L, L2)) → U3(L, X, L1, minsort_in(L2, L1))
minsort_in([], []) → minsort_out([], [])
U3(L, X, L1, minsort_out(L2, L1)) → minsort_out(L, .(X, L1))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U21(L, X, L1, remove_out(X, L, L2)) → MINSORT_IN(L2, L1)
MINSORT_IN(L, .(X, L1)) → U11(L, X, L1, min1_in(X, L))
U11(L, X, L1, min1_out(X, L)) → U21(L, X, L1, remove_in(X, L, L2))
min1_in(M, .(X, L)) → U4(M, X, L, min2_in(X, M, L))
remove_in(N, .(M, L), .(M, L1)) → U9(N, M, L, L1, notEq_in(N, M))
remove_in(N, .(N, L), L) → remove_out(N, .(N, L), L)
U4(M, X, L, min2_out(X, M, L)) → min1_out(M, .(X, L))
U9(N, M, L, L1, notEq_out(N, M)) → U10(N, M, L, L1, remove_in(N, L, L1))
min2_in(X, A, .(M, L)) → U5(X, A, M, L, min_in(X, M, B))
min2_in(X, X, []) → min2_out(X, X, [])
notEq_in(0, s(X)) → notEq_out(0, s(X))
notEq_in(s(X), 0) → notEq_out(s(X), 0)
notEq_in(s(X), s(Y)) → U13(X, Y, notEq_in(X, Y))
U10(N, M, L, L1, remove_out(N, L, L1)) → remove_out(N, .(M, L), .(M, L1))
U5(X, A, M, L, min_out(X, M, B)) → U6(X, A, M, L, min2_in(B, A, L))
U13(X, Y, notEq_out(X, Y)) → notEq_out(s(X), s(Y))
min_in(X, Y, Y) → U8(X, Y, gt_in(X, Y))
min_in(X, Y, X) → U7(X, Y, le_in(X, Y))
U6(X, A, M, L, min2_out(B, A, L)) → min2_out(X, A, .(M, L))
U8(X, Y, gt_out(X, Y)) → min_out(X, Y, Y)
U7(X, Y, le_out(X, Y)) → min_out(X, Y, X)
gt_in(s(X), 0) → gt_out(s(X), 0)
gt_in(s(X), s(Y)) → U11(X, Y, gt_in(X, Y))
le_in(0, 0) → le_out(0, 0)
le_in(0, s(Y)) → le_out(0, s(Y))
le_in(s(X), s(Y)) → U12(X, Y, le_in(X, Y))
U11(X, Y, gt_out(X, Y)) → gt_out(s(X), s(Y))
U12(X, Y, le_out(X, Y)) → le_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
U21(X, remove_out(L2)) → MINSORT_IN(L2)
U11(L, min1_out(X)) → U21(X, remove_in(X, L))
MINSORT_IN(L) → U11(L, min1_in(L))
min1_in(.(X, L)) → U4(min2_in(X, L))
remove_in(N, .(M, L)) → U9(N, M, L, notEq_in(N, M))
remove_in(N, .(N, L)) → remove_out(L)
U4(min2_out(M)) → min1_out(M)
U9(N, M, L, notEq_out) → U10(M, remove_in(N, L))
min2_in(X, .(M, L)) → U5(L, min_in(X, M))
min2_in(X, []) → min2_out(X)
notEq_in(0, s(X)) → notEq_out
notEq_in(s(X), 0) → notEq_out
notEq_in(s(X), s(Y)) → U13(notEq_in(X, Y))
U10(M, remove_out(L1)) → remove_out(.(M, L1))
U5(L, min_out(B)) → U6(min2_in(B, L))
U13(notEq_out) → notEq_out
min_in(X, Y) → U8(Y, gt_in(X, Y))
min_in(X, Y) → U7(X, le_in(X, Y))
U6(min2_out(A)) → min2_out(A)
U8(Y, gt_out) → min_out(Y)
U7(X, le_out) → min_out(X)
gt_in(s(X), 0) → gt_out
gt_in(s(X), s(Y)) → U11(gt_in(X, Y))
le_in(0, 0) → le_out
le_in(0, s(Y)) → le_out
le_in(s(X), s(Y)) → U12(le_in(X, Y))
U11(gt_out) → gt_out
U12(le_out) → le_out
min1_in(x0)
remove_in(x0, x1)
U4(x0)
U9(x0, x1, x2, x3)
min2_in(x0, x1)
notEq_in(x0, x1)
U10(x0, x1)
U5(x0, x1)
U13(x0)
min_in(x0, x1)
U6(x0)
U8(x0, x1)
U7(x0, x1)
gt_in(x0, x1)
le_in(x0, x1)
U11(x0)
U12(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U21(X, remove_out(L2)) → MINSORT_IN(L2)
Used ordering: Polynomial interpretation [25]:
U11(L, min1_out(X)) → U21(X, remove_in(X, L))
MINSORT_IN(L) → U11(L, min1_in(L))
POL(.(x1, x2)) = 1 + x1 + x2
POL(0) = 1
POL(MINSORT_IN(x1)) = 1 + x1
POL(U10(x1, x2)) = 1 + x1 + x2
POL(U11(x1)) = 0
POL(U12(x1)) = x1
POL(U13(x1)) = 0
POL(U11(x1, x2)) = 1 + x1
POL(U21(x1, x2)) = 1 + x2
POL(U4(x1)) = 0
POL(U5(x1, x2)) = 0
POL(U6(x1)) = 0
POL(U7(x1, x2)) = 0
POL(U8(x1, x2)) = 1
POL(U9(x1, x2, x3, x4)) = 1 + x2 + x3
POL([]) = 0
POL(gt_in(x1, x2)) = 0
POL(gt_out) = 0
POL(le_in(x1, x2)) = x1 + x2
POL(le_out) = 1
POL(min1_in(x1)) = 0
POL(min1_out(x1)) = 0
POL(min2_in(x1, x2)) = 0
POL(min2_out(x1)) = 0
POL(min_in(x1, x2)) = 1 + x1 + x2
POL(min_out(x1)) = 0
POL(notEq_in(x1, x2)) = x1
POL(notEq_out) = 0
POL(remove_in(x1, x2)) = x2
POL(remove_out(x1)) = 1 + x1
POL(s(x1)) = x1
U10(M, remove_out(L1)) → remove_out(.(M, L1))
remove_in(N, .(M, L)) → U9(N, M, L, notEq_in(N, M))
remove_in(N, .(N, L)) → remove_out(L)
U9(N, M, L, notEq_out) → U10(M, remove_in(N, L))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U11(L, min1_out(X)) → U21(X, remove_in(X, L))
MINSORT_IN(L) → U11(L, min1_in(L))
min1_in(.(X, L)) → U4(min2_in(X, L))
remove_in(N, .(M, L)) → U9(N, M, L, notEq_in(N, M))
remove_in(N, .(N, L)) → remove_out(L)
U4(min2_out(M)) → min1_out(M)
U9(N, M, L, notEq_out) → U10(M, remove_in(N, L))
min2_in(X, .(M, L)) → U5(L, min_in(X, M))
min2_in(X, []) → min2_out(X)
notEq_in(0, s(X)) → notEq_out
notEq_in(s(X), 0) → notEq_out
notEq_in(s(X), s(Y)) → U13(notEq_in(X, Y))
U10(M, remove_out(L1)) → remove_out(.(M, L1))
U5(L, min_out(B)) → U6(min2_in(B, L))
U13(notEq_out) → notEq_out
min_in(X, Y) → U8(Y, gt_in(X, Y))
min_in(X, Y) → U7(X, le_in(X, Y))
U6(min2_out(A)) → min2_out(A)
U8(Y, gt_out) → min_out(Y)
U7(X, le_out) → min_out(X)
gt_in(s(X), 0) → gt_out
gt_in(s(X), s(Y)) → U11(gt_in(X, Y))
le_in(0, 0) → le_out
le_in(0, s(Y)) → le_out
le_in(s(X), s(Y)) → U12(le_in(X, Y))
U11(gt_out) → gt_out
U12(le_out) → le_out
min1_in(x0)
remove_in(x0, x1)
U4(x0)
U9(x0, x1, x2, x3)
min2_in(x0, x1)
notEq_in(x0, x1)
U10(x0, x1)
U5(x0, x1)
U13(x0)
min_in(x0, x1)
U6(x0)
U8(x0, x1)
U7(x0, x1)
gt_in(x0, x1)
le_in(x0, x1)
U11(x0)
U12(x0)